Taxi GPS data processing
|
Deletes records of instantaneous changes in passenger carrying status from taxi data. |
|
Input Taxi GPS data, extract OD information |
|
Input Taxi data and OD data to extract the trajectory points for delivery and idle trips |
- transbigdata.clean_taxi_status(data, col=['VehicleNum', 'Time', 'OpenStatus'], timelimit=None)
Deletes records of instantaneous changes in passenger carrying status from taxi data. These abnormal records can affect travel order judgments. Judgement method: If the passenger status of the previous record and the next record are different from this record for the same vehicle, then this record should be deleted.
- Parameters:
data (DataFrame) – Data
col (List) – Column names, in the order of [‘VehicleNum’, ‘Time’, ‘OpenStatus’]
timelimit (number) – Optional, in seconds. If the time between the previous record and the next record is less than the time threshold, then it will be deleted
- Returns:
data1 – Cleaned data
- Return type:
DataFrame
- transbigdata.taxigps_to_od(data, col=['VehicleNum', 'Stime', 'Lng', 'Lat', 'OpenStatus'])
Input Taxi GPS data, extract OD information
- Parameters:
data (DataFrame) – Taxi GPS data
col (List) – Column names in the data, need to be in order [vehicle id, time, longitude, latitude, passenger status]
- Returns:
oddata – OD information
- Return type:
DataFrame
- transbigdata.taxigps_traj_point(data, oddata, col=['Vehicleid', 'Time', 'Lng', 'Lat', 'OpenStatus'])
Input Taxi data and OD data to extract the trajectory points for delivery and idle trips
- Parameters:
data (DataFrame) – Taxi GPS data, field name specified by col variable
oddata (DataFrame) – Taxi OD data
col (List) – Column names, need to be in order [vehicle id, time, longitude, latitude, passenger status]
- Returns:
data_deliver (DataFrame) – Trajectory points for delivery trips
data_idle (DataFrame) – Trajectory points for idle trips